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The spectra and correlations of the velocity fluctuations in turbulent channels,
especially above the buffer layer, are analysed using new direct numerical simulations
with friction Reynolds numbers up to Reτ = 1900. It is found, and explained, that
their scaling is anomalous in several respects, including a square-root behaviour of
their width with respect to their length, and a velocity scaling of the largest modes
with the centreline velocity Uc. It is shown that this implies a logarithmic correction
to the k−1 energy spectrum, and that it leads to a scaling of the total fluctuation
intensities away from the wall which agrees well with the mixed scaling of de Graaff
& Eaton (2000) at intermediate Reynolds numbers, but which tends to a pure scaling
with Uc at very large ones.

1. Introduction
While self-similarity is always a welcome feature in physical problems, simplifying

their solution and providing insight into their behaviour, its failure in situations in
which in principle it ought to apply is perhaps even more interesting, because it forces
us to explain what went wrong. Some of the best-known similarity arguments in fluid
dynamics are those regarding the overlap layer in wall turbulence, and it has lately
become increasingly clear that, while the logarithmic law for the mean velocity profile
may be a good approximation to the experimental data (Zagarola & Smits 1997;
Österlund et al. 2000), there are serious similarity failures in the behaviour of the
velocity fluctuations, including the scaling of their intensity in wall units and their
predicted k−1 energy spectrum.

The reason why the intensity of the streamwise velocity fluctuations does not scale
well with the friction velocity was given by Townsend (1976), who noted that wall-
parallel motions are inactive from the point of view of the Reynolds stresses, and do
not have to scale with them. The discovery by de Graaff & Eaton (2000) that they
scale well in mixed units was however unexpected, and presents a clear theoretical
challenge, because it implies that they should be describable by a well-defined model.

Even more interesting is the failure of the k−1 energy spectrum, which can be easily
predicted from an assumed lack of length scale for fluctuations whose wavelengths
are short with respect to the flow thickness, but long with respect to the wall
distance (Townsend 1976). It has been known since Laufer (1954) that the k−1 law
is approximately correct, but recent detailed observations by Hites (1997) and by
Morrison et al. (2002) reveal important corrections which are inconsistent with the
original argument.
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Case Reτ Lx/h Lz/h T Ub/Lx �x+ �z+ �y+
c Nx Nz Ny

Series 1 L550 547 8π 4π 10 8.9 4.5 6.7 1536 1536 257
L950 934 8π 3π 9.2 7.6 3.8 7.6 3072 2304 385

Series 2 S550 550 π π/2 77 8.9 4.5 6.7 192 192 257
S950 964 π π/2 27 7.8 3.9 7.8 384 384 385
S1900 1901 π π/2 22 7.8 3.9 7.8 768 768 769

Table 1. Parameters of the simulations. T is the time during which the statistics were collected
after discarding initial transients. Ub is the bulk velocity. �x and �z are the collocation
resolutions parallel to the wall, using Nx and Nz points. �yc is the wall-normal grid spacing
at the centre of the channel, and Ny is the number of Chebychev polynomials.

The present paper looks at the reasons for those two failures, which we will find
to be related. We use data from new direct numerical simulations of plane turbulent
channels at moderate Reynolds numbers Reτ = uτh/ν � 1900, where uτ is the wall-
friction velocity and h is the channel half-width. The new data show that the original
failure of self-similarity occurs in the relation between the lengths and widths of the
structures in the overlap region, and that this failure results in logarithmic corrections
to the k−1 energy spectrum. These are then demonstrated using experimental data,
for which h will represent the pipe radius or the 99% boundary layer thickness.

We then show, and motivate, that the velocity scale of the largest structures is not
the friction velocity, but the mean velocity at the centreline, and use the resulting
spectral model to derive a modified mixed scaling law for the fluctuations.

The new simulations are described in § 2. The results, and their relations to the
different scaling arguments, are detailed in § 3, followed by a short concluding section.
The companion paper by Jiménez, del Álamo & Flores (2003) extends the present
analysis to the buffer and viscous layers, and that by del Álamo et al. (2004) contains
a more detailed analysis of the structures away from the wall.

2. The numerical experiments
The numerical code integrates the Navier–Stokes equations in the form of evolution

problems for the wall-normal vorticity ωy and for the Laplacian of the wall-normal
velocity ∇2v, as in Kim, Moin & Moser (1987). The spatial discretization uses dealiased
Fourier expansions in the wall-parallel planes, and Chebychev polynomials in y. The
streamwise and spanwise coordinates and velocity components are respectively x, z

and u, w. The temporal discretization is third-order semi-implicit Runge–Kutta, as in
Moser, Kim & Mansour (1999).

The present simulations, summarized in table 1, are divided into two series. The
runs in the first one use numerical boxes with very long periodicities Lx and Lz, to
try to account for all the energetic structures in the flow, including those in the outer
region whose size is proportional to h, and that could not be captured accurately in
previous simulations (Jiménez 1998; Kim & Adrian 1999; del Álamo & Jiménez 2001,
2003).

The second series of experiments focuses on the overlap layer, increasing the
Reynolds number at the expense of the size of the numerical box, especially for the
case S1900. Less emphasis will be put on the other two simulations in this series,
which were performed mainly to assess the effect of small numerical boxes on the
computed statistics. That effect cannot necessarily be neglected, since the fractions
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Figure 1. (a) Mean velocity defect as a function of wall distance. (b) Deviation Ψ of the
mean velocity from the logarithmic function. - - - - - -, L550; , L950; �, S550; �, S950;
�, S1900. The shaded region in (b) covers the maximum scatter of experimental boundary
layers from Smith (1994), Reθ = 4600–13000, Österlund et al. (2000), Reθ = 2500–27000, and
de Graaff & Eaton (2000), Reθ = 1430–31000. The hatched area covers experimental pipes
from Perry et al. (1986), Reτ = 1600–3800, Durst et al. (1995), Reτ = 271–570 and Zagarola &
Smits (1997), Reτ = 1700–5.3 × 105. Only y/h < 0.1 has been included in the experimental data
to avoid contamination by points in the outer layer.

Figure 2. Premultiplied one-dimensional uv-cospectra k|E1D
uv |+ as functions of wavelength λ

and wall distance. Shaded contours, case L950; line contours, case S950. The contours are
0.2(0.2)0.8 times the maximum value from case L950. The dashed lines mark the size of the
smaller box.

of the Reynolds stress 〈uv〉 which are contained in the simulations L550 and L950
at scales larger than the size of the smaller boxes (i.e. in wavelengths either longer
than λx = πh or wider than λz = πh/2), are respectively 51% and 47% when averaged
across the whole channel.

This result agrees with recent evidence that there are important large-scale contribu-
tions to 〈uv〉 (Jiménez 1998; del Álamo & Jiménez 2001; Liu, Adrian & Hanratty
2001), and is probably the reason why the mean-velocity defects from cases S550, S950
and S1900 do not scale as accurately as those from cases L550 and L950 (figure 1a).
However, figure 2 suggests that the large-scale contributions to 〈uv〉 take place mostly
in the outer region, in agreement with Townsend’s (1976) idea that the impermeability
of the wall limits the large-scale motions with a wall-normal component. This figure
displays the premultiplied one-dimensional uv-cospectra, k〈û(k, y)v̂∗(k, y)〉, where û

and v̂ are the Fourier coefficients of u and v and k =2π/λ are either streamwise or
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Figure 3. (a, b) Two-dimensional spectral densities Φ+ as functions of λx/y and λz/y. The
line contours are Φ+

uu = 0.17. (a) y+ = 150 and the symbols are Φ+
vv = 0.06, (b) y/h = 0.15 and

the symbols are Φ+
ww = 0.08. These levels are roughly 5% of the corresponding intensities.

, �, case L550; ——–, �, L950; , �, S1900. The solid straight line is λx = λz,
and the dashed one is λ2

z = 2κλxy. (c) Sketch of the organization of Φuu, as discussed in text.
(d) Isocontours of correlation coefficient Cvv = 1/3 from case L950. Symbols, Cvv(15+, y): �,
y+ = 100; �, y+ = 200; ×, y+ = 300. Lines, Cvv(y/2, y): ——–, y+ = 200; , y+ = 300. The
correlation increases from left to right, and the straight lines are as in (a).

spanwise wavenumbers. Figure 2 also shows that the misrepresentation of the large
scales in the outer layer of the channel for case S950 does not affect substantially
the resolved part of the uv-cospectrum, especially as we move toward the wall. This
is also true for Reτ = 550, and it seems reasonable to expect the same to hold for
Reτ = 1900, particularly for the O(y) scales of the overlap region. This assumption is
confirmed by figure 1(b), which displays the deviations of the mean-velocity profiles
from a logarithmic law Ψ = U+ − κ−1 log(y+), using κ = 0.4. It suggests that the
overlap region of case S1900 has approximately reached the typical behaviour of
high-Reynolds-number experimental wall flows, which are represented in the figure
by the hatched and shaded regions. That conclusion, which will be further confirmed
throughout the paper, is not very sensitive to the precise value chosen for κ .

3. Results and discussion
Figures 3(a) and 3(b) show isolines of the premultiplied two-dimensional spectrum

of the streamwise velocity, Φuu(kx, kz, y) = kxkz〈ûû∗〉, as well as of Φvv and Φww .
Because of the range of Reτ in the numerical channels, figure 3(a) spans a factor of
more than 3 in y/h, while figure 3(b) does the same for y+. Both scale well with u2

τ

and y in the range y < λx < 10 y.
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However, the ridge of Φuu lies along λz ∼ (y λx)
1/2, and needs some discussion

because self-similarity would seem to require that λz ∼ λx . A similar square-root
behaviour was found for the width of the near-wall streaks by Jiménez et al. (2003),
who showed that its most probable cause was the spreading, under the effect of
lateral fluctuations, of wakes formed by compact v-structures. Although the outer
flow is less coherent than the near-wall layer, and the details of the spreading are
probably somewhat different, the source of the square-root behaviour is in both cases
the long-term dispersion by background turbulence (Townsend 1976, p. 337).

Consider the random stirring of the mean velocity gradient by active eddies of size
O(y) and intensity O(uτ ), which are represented by the spectral densities Φvv and Φww

in figures 3(a) and 3(b). The expected lateral deviations of the fluid elements caused
by those eddies at long times is λz ≈ (2 νT t)1/2, where νT ≈ κuτy is the turbulent eddy
diffusivity in the logarithmic region. As the wakes lengthen, time is converted into
wavelength as λx =�Ut , where �U is the difference between the mean flow and the
advection velocity of the forcing fluctuations. There are few data on the advection
velocities of v and w in the logarithmic layer, but Kim & Hussain (1993) find that they
differ from the local mean velocity by at most a few wall units (see also del Álamo
et al. 2004). This leads to the desired relation, λ2

z = 2κλxy/�U+, which is represented
in figures 3(a) and 3(b) with �U+ = 1. As the wakes widen they also grow in height,
although the y-dependence of νT leads then to a linear growth.

Refer now to the diagram in figure 3(c). Besides the two square-root segments bc
and ad, Φuu is bounded at short wavelengths by the segment ab along λz ≈ λx , which
represents the linear dispersion of fluid elements for separations shorter than the
integral scale of the active eddies (see below). This scale is of the order of λx = 10y,
and marks both the transition between the linear and square-root behaviours of Φuu,
and the long-wave cut-offs of Φvv and Φww . It is also the border between wall-attached
and wall-detached eddies. Consider the isocontours in figure 3(d) of the correlation
coefficient of v̂ at two heights, defined as

Cvv = |〈v̂(λx, λz, y0)v̂
∗(λx, λz, y)〉|/(〈|v̂(λx, λz, y0)|2〉〈|v̂(λx, λz, y)|2〉)1/2

. (3.1)

The lines in figure 3(d) indicate that when y0 ∼ y (y0 = y/2 for the lines shown), and
both y and y0 are in the logarithmic layer, the λ dependence of the correlations
scales with y. This breaks down however if λ is much larger than h. Similarly, with
y0 fixed in the viscous layer (y+

0 = 15 for the symbols in figure 3d), the wavelength
dependence also scales with y, but the region of significant correlation is shifted to
much larger λx . This result, which was also observed for Cuu and Cww , suggests that
there is a range of wavelengths which are correlated within the overlap layer, but not
with the wall, and which are therefore ‘detached’ in the sense of Townsend (1976).
The detached wavelength range extends between the two sets of contours in figure
3(d), and is bounded for large wavelengths at λx ≈ 10 y, because for such wavelengths,
correlations reach to the wall. It also contains all the energetic scales for v as shown in
figure 3(a). This is consistent with the idea that blocking by the wall limits the size of
the active wall-normal motions, and explains the transition from linear to square-root
behaviour of Φuu. At long wavelengths the u-spectrum is no longer forced by the
active eddies, and only the incoherent square-root behaviour remains. The ridge of
Φuu, which does not contain Φvv nor Φww , corresponds to Townsend’s (1976) attached
inactive motions. The limit that separates active and inactive eddies is represented by
the chain-dotted lines in figure 3(c).
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Figure 4. Premultiplied one-dimensional spectra kxE
1D
uu as functions of the streamwise

wavelength λx . (a) Scaled with similarity variables uτ and y. The distance to the wall, y+ > 200,
increases in the sense of the arrow. Only y/h < 0.1 has been considered in the experiments
to avoid contamination by the points in the outer layer, while up to y/h = 0.5 has been
represented for the DNS. The dotted straight line is 0.2 log(4λx/y). (b) Scaled with outer
variables Uc and h, y/h =0.1. The dotted straight line is 5 × 10−4 log[24h2/(λxy)]. The solid
vertical lines mark the band 6 < λx/h < 24 used to obtain figure 5 and (3.3). - - - - - -, L550;

, L950; �, S1900. The shaded areas cover the maximum scatter of experimental boundary
layers from Hites (1997), Reτ = 1300–7100. The circles and the hatched regions are for pipe
flow from Perry & Abell (1975). Reτ = 2325–4900.

Note that, because 〈uv〉 is mostly generated by the detached eddies in the range A
of the spectrum shown in figure 3(c), the intensity of the fluctuations in that region
should scale well with uτ . This is consistent with the collapse of the different Reynolds
numbers in figures 3(a) and 3(b), and also holds for other spectral and correlation
isolines.

The only limit in figure 3(c) which does not scale with y is the dashed horizontal

line λz = λzc, that fixes the maximum width of Φuu. Del Álamo & Jiménez (2003)
found that in channels λzc ≈ 2 h to 3h, which is probably due to the saturation in the
growth of the u-eddies as they reach the centre of the channel.

A consequence of these scalings is a logarithmic correction to the k−1
x one-

dimensional u-spectrum in the range of the detached eddies. Integrating Φuu over
λz we obtain,

kxE
1D
uu ≈

∫ λab

λad

Φuu

dλz

λz

≈ βu2
τ log(α2λx/y), (3.2)

where the two limits are the square-root lower bound λad ≈ α−1(λxy)1/2, and the
linear upper bound λab ≈ λx in figure 3(c). We have assumed that Φuu ≈ u2

τ is roughly
constant inside those limits, which is a reasonable approximation to the data. The
logarithmic correction reflects the different scalings of the two limits, and figure 4(a)
shows that it describes well the numerical and experimental spectra in the range
y < λx < 10y. The two numerical coefficients α ≈ 2 and β ≈ 0.2 in (3.2) have been
chosen to fit the data in figure 4(a), but the resulting value for α is also consistent
with the position of the lower limit of Φuu in figures 3(a) and 3(b).

The other spectral range in which the scaling is reasonably clear is region C in
figure 3(c), which corresponds to the ‘global’ modes described by Bullock, Cooper &
Abernathy (1978) and by del Álamo & Jiménez (2003) as being correlated across the
entire flow. There is no reason why these modes, which carry little Reynolds stress,
should scale with uτ and, because their large correlation heights suggest that they
originate from the stirring of the whole velocity profile, from the wall to the top
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Figure 5. (a, b) Average value, (kxE
1D
uu )0, of the premultiplied one-dimensional spectrum in the

band 6 < λx/h < 24 as a function of Reτ . Solid symbols, y/h = 0.05; open symbols, y/h = 0.1.
�, L550 and L950; �, Perry & Abell (1975); �, Hites (1997). (a) Scaled with uτ , (b) scaled
with Uc . (c) Amplitude f (y/h) of the global modes in (3.3). Shaded areas and circles are
as in figure 4; , the composite function used in (d) for u2

0. (d) R.m.s of the streamwise
velocity u′ scaled with u0 from (3.5) as a function of wall-distance y/h. , log(12h/y).
Boundary layers from de Graaff & Eaton (2000): �, Reτ = 540; 	, Reτ = 990; �, Reτ = 1700;
+, Reτ = 4300; ×, Reτ = 104; �, pipe flow from Perry & Abell (1975), Reτ = 4930; �, channel
flow from Comte-Bellot (1965), Reτ = 8160. In (c) and (d) , L550; ——–, L950. Only
y+ > 15 has been considered.

of the flow, a more plausible scale is the maximum mean velocity Uc. Figure 4(b)
shows that h and U 2

c are indeed reasonable scales for the one-dimensional spectra
when λx/h > 10. There is some variation between internal and external flows, to be
expected in these global modes, and even the long numerical boxes of cases L550
and L950 do not extend to the longest scales, but the collapse is convincing in the
common region marked in the figure by the two vertical lines. This is shown in
figures 5(a) and 5(b), which display the average energy density of u in that spectral
band as a function of Reynolds number. This magnitude is represented at two wall
distances which include the one in figure 4(b). When it is scaled with u2

τ it increases
with Reτ by approximately a factor of 2, but it remains roughly constant when scaled
with U 2

c , except for the lowest Reynolds number.
Computing the one-dimensional spectrum in the range C in figure 3(c), in the same

way as was done in (3.2), we obtain

kxE
1D
uu ≈

∫ λzc

λad

Φuu

dλz

λz

≈ U 2
c f (y/h) log

(
α2λ2

zc

λxy

)
, (3.3)

which includes a logarithm for the same reason as before, i.e. that the two limits
scale with a different power of λx . Equation (3.3) is included in figure 4(b) as the
dotted straight line, and represents the data reasonably well but, in contrast to the
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empirical amplitude β in the short-wave range in (3.2), the amplitude f (y/h) in (3.3)
depends on y/h. This is because, while the short detached structures are self-similar
in the sense of being unaffected by boundary conditions, those in region C represent
different levels in global eddies spanning the whole flow height, and have a definite
vertical structure. The function f (y/h) has been computed in figure 5(c) for various
flows by comparing the energy contained for each of them in the spectral band
6h < λx < 24h with model (3.3), and is fairly universal. It is shown by del Álamo et al.
(2004) that the vertical structure of all the attached modes in C is essentially the
same. The function f (y/h), as used in (3.3), is a representation of that structure.

The factor y in the denominator inside the logarithm of (3.3) is due to the
displacement with wall distance of the upper bound cd of region C in figure 3(c),
which progressively ‘cuts’ Φuu at lower values of λ/y. This effect, combined with the
variation of f , produces the shortening of the peak of the one-dimensional spectrum
as y increases through the outer layer, which has been documented by various groups,
probably first by Perry & Abell (1975).

One result of this ‘cutting’ effect is that above y > λzc/10 ≈ 0.2 h–0.3h, region B of
the spectrum disappears, and A touches C. This part of the flow is particularly easy
to analyse, and the total energy of the fluctuations can be obtained by integrating
(3.2) for λx < λzc and (3.3) for λx > λzc. This results in

u′2 ≈ u2
0 log2(α2λzc/y), (3.4)

where u0 is a mixed velocity scale

u2
0 =

[
βu2

τ + f (y/h)U+2
c

]/
2, (3.5)

which depends on the wall distance, and on the Reynolds number through U+
c .

Figure 5(d) applies this scaling to the present simulations and to the measurements of
de Graaff & Eaton (2000), Perry & Abell (1975) and Comte-Bellot (1965) in boundary
layers, pipes and channels. The value of f (y/h) that has been used is the compo-
site one represented in figure 5(c) by the dotted curve. The data in figure 5(d)
collapse reasonably well to (3.4) in the outer layer, even though Wosnik, Castillo
& George (2000) have shown that other flow features differ in that region between
boundary layers and parallel flows. Because of the slow growth of Uc with Reτ , the
velocity scale (3.5) roughly coincides, in the range of Reynolds numbers considered

in figure 5(d), with the one proposed by de Graaff & Eaton (2000), u′+2 ∼ U+
c , but

it tends to u+
0

2
= f U+

c

2
/2 when U+

c � 50, roughly Reτ � 108. For such high Reynolds
numbers, the one-dimensional spectrum would show a ‘discontinuity’ between (3.2)
and (3.3) around λx ≈ λzc, marking the wavelength beyond which the structures cross
the relatively sharp velocity drop near the wall. There are no reliable measurements
of u′ in the outer region at these Reynolds numbers, but the ‘nose’ visible in the
higher spectra in figure 4(a) could conceivably be an indication of such a mismatch.

Metzger et al. (2001) found that u′+2
near the wall still scales as U+

c at Reynolds
numbers of order 108, but the model that led to (3.5) does not apply in the buffer
layer, leading to different conclusions on the scaling. The structure of Φuu in that
region is described by Jiménez et al. (2003), and is more complex than in figure 3(c).
It has a local component which scales in viscous units and which is approximately
independent of the outer flow, superimposed on the square-root and global parts B
and C. The interactions between those three components are not clear, but there are
two effects which do not have a counterpart in the outer region. First, that f (y/h)
vanishes at the wall, so that the global modes at a given y+ do not necessarily increase
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with Reynolds number. Second, that the scale separation between the streaks and the
other two flow components grows with increasing Reynolds number.

Another region in which no simple scaling appears to be possible is region B in
figure 3(c), which is approximately the range where the classical k−1

x spectrum was
first documented. Perry, Henbest & Chong (1986) mentioned what they considered
small deviations to the self-similar spectrum at low wavenumbers, and Morrison
et al. (2002) proposed that one of the reasons for those deviations could be that the
velocity scales of the inner and the outer motions are different. The present results
are consistent with that interpretation. The same argument used for the global modes
implies that the velocity scale for an attached eddy of height yM should not be uτ ,
but the mean velocity U (yM ). It is then difficult to define a single velocity scale for the
spectrum in region B, which contains contributions from attached eddies of various
heights. Only below λx ≈ 10y, where the eddies detach from the wall, and above λx ≈ h,
where only eddies of height h exist, do we recover a single scaling. In between the two
ranges we can only expect a complex transition between the two regimes, which the
limited data at our disposal prevent us from exploring. The data in figures 4(a) and
4(b), and those presented by Hites (1997) and Morrison et al. (2002) are consistent
with this interpretation, since the latter in particular should have shown a k−1

x range
if there were one.

4. Conclusions
By using new results from direct simulations of turbulent channels at higher

Reynolds numbers and in larger boxes than those available up to now, we have
probed the corrections to the similarity assumptions in the logarithmic and outer
layers of wall-bounded turbulence.

It is shown that the first deviation from simple self-similarity occurs in the width
of the u-structures, which scales as the square root of their length because u acts like
a passive quantity dispersed by the background active turbulence. This anomalous
scaling results in logarithmic corrections to various ranges of the k−1 spectrum, which
have been used to collapse the numerical data with experiments at higher Reynolds
numbers.

A second non-classical scaling is the characteristic velocity of the largest u-
structures, which are global enough to scale with the velocity of the mean flow,
instead of with the friction velocity. This is again confirmed by experiments.

The resulting spectral model can be integrated to obtain a mixed scaling for the
total intensity of the fluctuating velocity, which collapses the numerical results well
with those of de Graaff & Eaton (2000) in the outer layer, and which predicts that
this part of the flow will tend to scale with the mean-stream velocity at very high
Reynolds numbers. These results do not extend to the near-wall region. The model
also explains other features of the energy spectrum, and is a manifestation of the outer
layers themselves, essentially unrelated to their interaction with the near-wall region.
As such, it should also essentially apply to other cases, such as flows over rough or
manipulated walls, in which the dynamics of the near-wall layer are different from
the present case. According to this argument, the only influence of the wall region on
the dynamics of the outer layer would come from changes of the velocity scale (3.5).
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Jiménez, J. 1998 The largest structures in turbulent wall flows. In CTR Annual Research Briefs ,
pp. 943–945. Stanford University.
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Österlund, J. M., Johansson, A. V., Nagib, H. M. & Hites, M. H. 2000 A note on the overlap
region in turbulent boundary layers. Phys. Fluids 12, 1–4.

Perry, A. E. & Abell, C. J. 1975 Scaling laws for pipe-flow turbulence. J. Fluid Mech. 67, 257–271.

Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoretical and experimental study of wall
turbulence. J. Fluid Mech. 119, 163–199.

Smith, R. W. 1994 Effects of Reynolds number on the structure of turbulent boundary layers. PhD
thesis, Princeton University.

Townsend, A. A. 1976 The Structure of Turbulent Shear Flows , 2nd Edn. Cambridge University
Press.

Wosnik, M., Castillo, L. & George, W. K. 2000 A theory for turbulent pipe and channel flows.
J. Fluid Mech. 421, 115–145.

Zagarola, M. & Smits, A. J. 1997 Experiments in high Reynolds number turbulent pipe flow. Phys.
Rev. Lett. 78, 239.


